
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

1

A PREDICTOR-BASED COMPRESSOR

Costin-Anton BOIANGIU 1*

Iulia STANICĂ 2

Vlad NECULAE 3

ABSTRACT

As technology evolved, more and more information is in circulation. The amount of data

is in a continuously expanding phase since the first digital data storage option. For this

matter, compression must be applied on, hence the predictor compression is one of the

choices used nowadays. The real benefit, not only comes from compressing data for

storage but from sending and receiving data over networks as well. Reducing the size of

the desired data before sending will ensure the transfer will be faster and network

bottlenecks are less likely to occur.

KEYWORDS: data prediction, data compression, neural network, machine learning,

prediction tree, polynomial interpolation

INTRODUCTION

Message transfer is a widely used form of communication today. Every day more than

150 billion emails are sent over the world and more than 4 billion searches are performed

over the Internet. These actions bring with them the need to store large amounts of

information in a compressed form.

There is also streaming which requires real-time delivery, meaning data has to be hastily

compressed, delivered and decompressed, with the smallest delay possible. To consume

as few resources as possible, such as storage space or bandwidth, it is necessary to process

the data in order to represent it in a reduced format (compression) but which offers the

same quality of information upon decompression.

Due to storage limitation or network bandwidth, data must be compressed to store or to

transfer it. In order to do so, redundant information found within data shall be removed.

As a solution, a predictor is a high-speed compression algorithm. On what a predictor

excels is that it is still one of the fastest algorithms for compression used today, even if

the ratio obtained is not the best.

1* corresponding author, professor PhD Eng., ”Politehnica” University of Bucharest, 060042 Bucharest,

Romania, costin.boiangiu@cs.pub.ro
2 Teaching Assistant, Eng, PhD Student, ”Politehnica” University of Bucharest, 060042 Bucharest, Romania,

iulia.stanica@cs.pub.ro
3 Student, ”Politehnica” University of Bucharest, 060042 Bucharest, Romania, neculae.vlad@gmail.com

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

2

Generally, data compression is preferred when it is rarely used, otherwise, depending on

the implementation and on the data type and content, it is possible to spend more time and

resources on decompressing the data in order to access the initial information.

Compression algorithms are time and resources consuming. For example, streaming

would require real-time delivery, meaning data has to be hastily compressed, send

through whatever means of communication is used, such as the internet, radio, satellite

etc., and fast decompressed at the receiver, with the smallest delay possible. Depending

on various factors such as bandwidth, speed, location, storage etc., this would be, or not,

preferred in order to obtain the desired result.

In our current paper, we will present various compression methods, their applicability, the

data types on which the algorithms perform best, the underlying structure and

functionality of each, and the obtained results after tests.

We will present dome data-specific modules featuring neural network prediction,

prediction trees, and numerical interpolation. Each predictor has its performance based on

the data acquired at a given time. A codec module will make use of the aforementioned

predictors to encode and decode data from a file.

This paper will cover the basics of prediction-based compression, the general idea as well

as how it is actually working, followed by approaches for implementation and their

corresponding results.

ARCHITECTURE OF APPLICATION

Given a data stream denoted DS, containing either a fixed number of bytes, namely N

bytes, expressed as D[0]…D[N-1], or an indefinitely continuous number of bytes D[…].

Given any DS data stream, the aim is to compress and respectively decompress it using a

number of predictors for different sets of data types and to use a mean to select and

alternate between the predictors in order to choose the one which best performs on the

DS, thus allowing to achieve best compressing and decompressing results.

Components

A theoretical approach to this subject would be having a number of interlinked and

dependent modules, each performing a single, indivisible objective, specifically: a

predictor module, a codec module, a core encoding module and an after-prediction

encoding module, all of which will be detailed in the following paragraphs.

Predictor Module

The predictor module has to encapsulate the total number of predictors used for

attempting to make a best-guess of the next DS, looking into the current DS data history

and also decide which predictor produces the best result on the given DS. Every Predictor

will have to take into account a maximum number of bits and predict a given number of

bits, according to its data type. Moreover, the predictor must also be able to produce as

well as to receive residues for the encoding and, respectively, decoding process. The

aforementioned residue represents the difference, if any, between the data anticipated by

the predictor and the actual DS data. This difference can be computed by choosing from a

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

3

large variety of means and it depends on each predictor to determine, according to the DS

data type, the best residue-computing mechanism, be it difference at every byte-level,

integer-like difference on multi-byte representation, difference between dictionary entries

in the case of dictionary-based prediction, smart heuristics etc., or a combination of the

above. The purpose is to decrease the entropy of the residue, to maximize the uniformity

of residue data at byte-level and to group similar symbols together, where, by entropy is

denoted the randomness of the data, and the unpredictability of the entire system; the

more the entropy the lesser the compression ratio will be, thus the entire system will lack

performance.

Codec Module

The codec module is responsible for performing the compression and decompression of

data contained in different files, by making use of the results obtained after running the

predictor module over data chunks. In order to perform the compression operation, the

codec module has to receive an archive name to create, if non-existent, and a file name to

compress and add to the archive. Correspondingly, the decompression operation will only

be executed if an archive name to decompress will be provided. A binary executable, the

codec, will receive a parameter which will indicate what action to perform: adding

compressed file to the archive, extracting and decompressing the content of the archive,

listing the content contained by the archive, as well as metadata information, such as the

date and time, the file size, compression ratio, checksums; and testing the integrity of the

archive as it is of very crucial importance to create a valid, uncorrupted archive, since the

compression needs to be lossless, and thus the data retrieved entirely.

Core Encoding Process Module

A good approach is to use two tables, one containing all the predictors (TP – “Table of

Predictors”, index represented on NB bits for an up to 2NB
 total predictors), and one for

containing the most recently used predictors (TRUP – “Table of Recently Used

Predictors”, index represented on NBRU bits for an up to 2NBRU positions. TRUP will be

updated at every encoding step, using a MRU-type logic, keeping in mind that the lower

the index, the better the expectancy of the predictor to be used again, and the last index

kept reserved for a special marker (NIT – “Not in Table) used as an “escape” to specify

that a newly requested predictor, currently not in the TRUP will be loaded from the TP

and the full TP index will be encoded afterward on NB bits. In the logical compressed

data stream, the predictor will be followed by the residue resulted as a “difference”

between the predicted value and the real data stream values.

The residue will be produced by the selected predictor. In the case of the LAST predictor,

no residue value is needed. It is not necessary to code explicitly the number of bits used

for every predictor, simply because a limited number of bits values will make sense and,

as a result, different bits values for the same predictor may occupy different entries in

TRUP and TP tables.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

4

Example of predictors may include:

• NONE(N) – No prediction for the next N bits, the residue will be DS itself;

• LAST(N) – The prediction is exactly the last N bits encountered, the residue will

be the difference;

• INT(N) – N-bit integer is expected, compute residue as a difference on N-bit

numbers;

• FLOAT(N) – N-bit FP number is expected, compute residue as a difference on N-

bit FP numbers;

• TEXT(N) – Text of N-bit characters is expected, predict as textual information

then store the residue as N-bit difference from the prediction;

After-Prediction Encoding Module

After using a chosen prediction-based compression algorithm for encoding, to ensure all

the data obtained by the previously mentioned modules is compressed it will be used a

third-party powerful generic compression library, such as Zlib.

SPECIFIC PREDICTION MODULES

Neural Network Predictor

The idea behind the Neural Network Predictor approach is to use a general multi-layer

perceptron neural network to create a text predictor. As input, the network receives N

characters from the history and outputs M predicted characters where M < N. We tried

various architectures for the network, most of which differed based on their number of

inputs and outputs.

Firstly, we tried a simple approach, in which the characters were fed into the network as

they were, without any preprocessing. It means that the network worked at byte level. A

few architectures that we tried are: 64 -> 32 -> 16 -> 8, 32 -> 16 -> 8 or 512 -> 128 ->

32 and so on. The numbers correspond to the size of fully-connected layers in a multi-

layer perceptron architecture.

The second approach consists of processing the characters at bit level. That means each

byte had to be split in its individual bits and fed into the network. For example, a network

with 8-byte input will now have 64-bits input.

The networks were trained on a compilation of texts from Wikipedia [1] and on two books

from gutenberg.org, Pride and Prejudice, and Heart of Darkness. Pride and Prejudice

was used as training data while Heart of Darkness was used as testing data.

Prediction Tree

Prediction Tree (PT) is an algorithm designed to predict the next symbol in a sequence of

symbols, by trying to match a sequence of symbols to the last N symbols from the input

history. As an example, the following sequence will be considered: “streamstreamstre”. It

represents a history of the last parsed symbols. A good prediction for the following

character in the given sequence would be ‘a’, as the ‘a’ symbol is always preceded by ‘e’

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

5

in the data stream history. Moreover, it can be noticed that ‘a’ is always preceded by the

“re” sequence and so on. The more matches are made, the clearer it is that ‘a’ should be

the next character in the given sequence.

An important deficiency of this model is its limitation in terms of the number of patterns

that can be learned. Even the most subtle variation within a symbol subsequence will

greatly affect the prediction’s outcome, and also the prediction’s accuracy. Therefore, this

algorithm does not behave very well if datasets include a high degree of noise, but the

tests have shown that this algorithm can behave pretty well for various types of inputs.

The Prediction Tree is a multi-children decision tree. Each node is described by a symbol

and contains references to its parent and children nodes. A sequence of symbols within

the tree is represented as starting from a child of the root and continuing to any other node

down in the tree. In order to build the PT, the training algorithm is fed with a set of

sequences from a training dataset.

Given a sequence of symbols, the algorithm verifies whether the current node (initially

the root) has a child containing the value of the first symbol of the sequence, in which

case the next symbol is being processed. Otherwise, a new child of the current node is

created, containing the current symbol, a child that now becomes the new current node.

This process is repeated until no symbols are left in the given sequence.

Moreover, each node also contains a table of symbols to predict (prediction table) and the

number of occurrences of each symbol because choosing the next symbol will be based

on the symbols’ occurrence probabilities. This table of symbols will not keep the entire

set of symbols which resulted from training, but only the first N symbols with the highest

number of occurrences.

Given a sequence of symbols, the algorithm verifies whether the current node (initially

the root) has a child containing the value of the first symbol of the sequence, in which

case the current node becomes the child node described by the first symbol in the

sequence and so the next symbol is being processed. Each symbol in the sequence is thus

processed until there is no child of the current node containing the next symbol to be

processed, from the sequence of given symbols.

Thus, if the next sequence symbol to be processed is not contained by a child of the

current node, based on the prediction table of the current node, the algorithm will provide

the symbol with the highest probability of occurrence, as the predicted symbol. If the

current node does not contain any symbol in the table of prediction symbols, then the

algorithm will go up to the parent to let it provide a prediction symbol based on its

prediction table (and so on). If no parent contains any symbol in its prediction table, the

root will always provide a prediction symbol (always the same symbol).

If a prediction table contains two or more symbols with the same highest probability, then

the last parsed symbol will be chosen.

Polynomial Interpolation Predictor

A classic mathematical method used to predict data is polynomial interpolation or

extrapolation. Polynomial interpolation is used to estimate data inside the range of two

known points, while extrapolation estimates data in the future, based on previous data.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

6

The objective of this research is to predict future data based on a data stream. Therefore,

using polynomial regression is a valid technique. This method tries to construct a

regression model following the general formula:

where xj , 1 ≤ j ≤ n, the index of the data or a measure of one of its traits; yj , 1 ≤ j ≤ n, the

data at point xj; ej ,1 ≤ j ≤ n, the residual errors of the prediction (the difference between

what the model predicted using f(xj) and what the data should be).

Adapting the formula such that the regression model is polynomial, the f(xj) function can

be defined as such:

where: d – the degree of the polynomial and ck, 0 ≤ k ≤ d are constants.

Based on the previous paragraphs, the process of polynomial data prediction must fit a

polynomial to the given data stream and then use that polynomial to predict the data that

follows. Polynomial fitting requires the constants and degree of the polynomial to be

determined. Afterward, the polynomial must be tested to check if it correctly predicts new

values.

Alglib is a numerical analysis and data processing library, which was used by this project

to implement the polynomial regression method. We used the library’s ‘polynomialfit’

function to estimate a polynomial of a certain degree based on a given number of bytes of

the data stream given as input. Using the resulting polynomial, Alglib’s ‘barycentriccalc’

function then predicts the next few bytes of the data stream. The index of the byte data

stream represents the x variable of the polynomial and the data byte represents y = f(x),

the result of the polynomial.

The predictor was written in C++, using the Alglib library and its previously mentioned

functions are used to fit 3rd and 4th-degree polynomials and then predict data.

CONCLUSIONS AND FUTURE WORK

As benchmark test files, we used the files from the Maximum Compression website [8].

We found 10 general files for benchmarking the performance of file compressors. We

compared our results with the results of the best compression programs known at this

moment: PAQ8PX and WinRK 3.1.2.

We benchmarked each predictor individually and we measured the compressed size, the

compression ratio and the time it took to compress (which is not of great relevance in this

context). The most relevant metric here is the compression ratio which, in the end, was at

least comparable to the best solution available.

The implementation of the presented algorithms may be further refined and optimized to

obtain even better results through an efficient implementation. There is still work to be

done in order to create more complex predictors. For now, the presented algorithms have

high potential as each has obtained good results for their given cases.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

7

The Neural Network Predictor shows great promise as it has some improvement. The

more training it is applied to it, the more improvement should be made.

Prediction Tree has a very good ratio in most cases and its results prove this.

The Polynomial data prediction is potentially useful if the data stream is mostly

numerically-based.

In conclusion, the presented research is just in the beginning phase but displays promising

results. There is a lot of room for improvement of the currently existing algorithms as

well as for new ideas on how to approach this particular subject. For now, the presented

algorithms have high potential as each has obtained good results in their use cases.

ACKNOWLEDGMENTS

The authors would like to thank the following MSc students (in alphabetical order):

ARTENE Cristina, ATANASIU Alexandru-Marian, AUNGURENCEI Ștefania, BĂLOI

Bogdan-Cristian, BEJAN Andrei Stelian, BELMEGA Diana-Elena, BÎRZU George,

CARAGHEORGHIEV Mihai-Traian, DAMIAN Petrișor-Alin, DINU Ovidiu Alexandru,

DORCIOMAN Albert-Alexandru, HĂLCEANU Andrei, IONESCU Ionuț-Emil, JINGA

Nicolae, MUEDIN Emin, PANAITESCU Cristian, PARASCHIVU Răzvan Mirel,

PRĂZARU Anca-Teodora, ȘERBAN Razvan, SIMION Ruxandra, SPOIALĂ Cristian,

TUDOR Cosmin-Mihai, UNGUREANU Teodor, VĂDUVA Gabriel Eugen, for their

great ideas, support and assistance with this paper.

REFERENCES

[1] S. Merity, “The wikitext long term dependency language modeling dataset”,

September 26, 2016, URL: https:// einstein.ai/ research/ the-wikitext-long-term-

dependency-language-modeling-dataset, Available online: June 30, 2018.

[2] M. Lavielle, “Polynomial regression model: an example”, URL: http://

sia.webpopix.org/ polynomialRegression1.html, Available online: June 30, 2018

[3] J. Schmidhuber, S. Heil, “Predictive coding with neural nets: application to text

compression”, URL: https:// pdfs.semanticscholar.org/ 5297/

664960407e14b574832d50c4637bf8e49c22.pdf, Available online: June 30, 2018

[4] A. Avramovic, G. Banjac, “On Predictive-Based Lossless Compression of Images

with Higher Bit Depths”, Telfor Journal, 2012, URL: http:// journal.telfor.rs/

Published/ Vol4No2/ Vol4No2_A9.pdf, Available online: June 30, 2018

[5] M. Fink, M. Holters, U. Zolzer, “Comparison of various predictors for audio

extrapolation”, 2013, URL: http:// dafx13.nuim.ie/ papers/

42.dafx2013_submission_27.pdf, Available online: June 30, 2018

[6] D. Giacobello, T. Waterschoot, “High-order sparse linear predictors for audio

processing”, August 2010, URL: https:// www.eurasip.org/ Proceedings/ Eusipco/

Eusipco2010/ Contents/ papers/ 1569293087.pdf Available online: June 30, 2018

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

8

[7] R. Saran, H. B. Srivastava, A. Kumar, “Median Predictor-based Lossless Video

Compression Algorithm for IR Image Sequences”, March 2009, URL: http://

docplayer.net/ 62668009-Median-predictor-based-lossless-video-compression-

algorithm-for-ir-image-sequences.html, Available online: June 30, 2018.

[8] Maximum Compression (lossless data compression software), URL:

www.maximumcompression.com, Available online: March 1, 2019.

